How does a pressure transmitter work?

A pressure transmitter has two key elements:

1. A pressure sensor
2. An application-specific integrated microchip

The pressure sensor detects the pressure of the medium and converts it into an electrical signal, while the microchip is essential for converting the generated electrical signal into a normalized output signal.

Hemsida_artikel_hur fungerar en tryckgivare_bild1

Pressure sensor

The pressure sensor is composed of a thin-film-on-steel cell where resistance bridges are applied as a thin film to the surface of a steel sensing element. This thin film is only a few atomic layers thick. When pressure is applied to the pressure sensor, its membrane deforms at predefined points. The resistors are placed exactly at these points and change their value when stretched or compressed. There are four strain resistors on the sensing element, with two resistors forming each path. A bridge can be formed in the middle where the voltage can be measured, which is called a Wheatstone bridge.

When there is no pressure, all the resistors have the same value, so there is no voltage between the left and right paths (Figure 2 and 3). When pressure deforms the membrane, two resistors are compressed, and two resistors are stretched. This increases the electrical resistance in the stretched areas. On the other hand, the pressure decreases in the compressed areas. This changes the state of the resistance bridge, and a signal is generated.

The measured signal from the pressure sensor is not linear and varies depending on the ambient temperature because the temperature has a strong influence on the resistance of the bridge (Figure 4).

Pressure transmitter-wheatstone-pressure-signal vs temperature
Pressure transmitter-

Application specific microchip

To obtain a linear, accurate, and temperature-independent measurement signal from the measured signal, intelligent electronics are required. These electronics correct and amplify the measurement signal, for example, a 10-millivolt signal is transformed into a 10-Volt signal. The correction values obtained are stored in the application-specific microchip (also called Application Specific Integrated Circuit, ASIC, Figure 5). These values are determined and stored individually for each pressure transmitter.

To determine the correction values, a precisely defined pressure is applied to the ready-mounted pressure transmitter, and the signal is measured. For the applied pressure, the correction values can be calculated. The process is then repeated at different temperatures. This allows the correction values for temperature compensation to be determined.

The correction values determined in this way are then stored in the chip. In this way, a linear and standardized measurement signal can be generated from the raw signal of the sensing element over the entire pressure and temperature range (Figure 1). This standardized measurement signal can be transmitted to higher-level control systems.

Pressure transmitter-signals-
Pressure transmitter-ASIC

The application-specific microchip (ASIC) houses millions of circuits on an area of approximately 2.5 x 2.5 millimeters, where soldering points establish contact between the chip and the electronics of the pressure transmitter (Figure 7).

To achieve the best measuring results, it is crucial to precisely match the measuring cell and the microchip. Trafag produces its own measuring cells and has developed its own ASIC, which gives its own pressure sensors an optimal function with a guarantee for both quality and reliability.

Watch the video from Trafag

 

Contact us to help you find the right pressure transmitter.
See our assortment of Trafags pressure transmitters.
Learn more about the pressure transmitter technology.

Source: Trafag